

#### 中华人民共和国汽车行业标准

QC/T 480 — 1999

汽车操纵稳定性指标限值与评价方法 代替 GB / T 13047

**--** 91

Criterion thresholds and evaluation of controllability and stability for automobiles

#### 1 主题内容与适用范围

本标准规定了汽车操纵稳定性指标限值与评价方法。

本标准适用于在公路、城市道路上行驶的汽车,非公路上行驶的汽车可参照执行。

#### 2 稳态回转试验

- 2.1 本项试验按中性转向点的侧向加速度值  $a_n$ 、不足转向度 U、车箱侧倾度  $K_*$ 等三项指标进行评价计分。
- 2.2 an、U 和 K,的下限值 anso、Uso、K,440与上限值 anjoo、U100、K,4100,见表 1 。

表 1

|                          |                       |                                    | 指                          | 标                                    |                                            |                                            |  |
|--------------------------|-----------------------|------------------------------------|----------------------------|--------------------------------------|--------------------------------------------|--------------------------------------------|--|
| 车 型                      | $a_{s\phi}$ $m/s^{k}$ | α <sub>π]δυ</sub> m/s <sup>2</sup> | U <sub>40</sub> (*)/(m/s²) | $U_{1\infty}$ $(^{\bullet})/(m/b^2)$ | K <sub>#0</sub><br>(°)/(m/s <sup>2</sup> ) | K <sub>\$100</sub> (*)/(m/s <sup>3</sup> ) |  |
| 轿车、客车和货车,最大总质量<br>≤2.5t  | 5, 00                 | 9. 80                              | 1.00                       | 0. 40<br>0. 24 <sup>17</sup>         |                                            |                                            |  |
| 客车和货车。<br>2. 5τ<最大总质量≪6t | 4.00                  | 8. 00                              | 1.00                       | 0.50                                 | 1. 20                                      | 0. 70                                      |  |
| 客车和货车。<br>最大总质量>6t       | 3.00                  |                                    | 1.20                       | 0. 50                                | 1. 20<br>1. 40 <sup>13</sup>               |                                            |  |

注:1)用于最高车速大于 160 km/h 的汽车。

2)用于最大总质量大于 9 t 的客车。



- 2.3 中性转向点的侧向加速度值 a<sub>n</sub>, 定义为前、后桥侧偏角差与侧向加速度关系曲线上, 斜率为零处的侧向加速度值。在所试的侧向加速度值范围内, 未出现中性转向点时, a<sub>n</sub>值用最小二乘法按无常数项的三次多项式拟合曲线进行推算。
- 2. 3. 1 中性转向点的侧向加速度值 an的评价计分值,按式(1)计算:

$$N_{a_0} = 60 + \frac{40}{a_{0100} - a_{000}} \cdot (a_0 - a_{000}) \cdots (1$$

式中: $N_{**}$ ——中性转向点侧向加速度值的评价计分值; $a_{n}$ ——中性转向点侧向加速度值的试验值, $m/s^{2}$ ; $a_{n60}$ ——中性转向点侧向加速度值的下限值, $m/s^{2}$ ; $a_{n100}$ ——中性转向点侧向加速度值的上限值, $m/s^{2}$ 。2.3.2 当  $N_{**}$ 大于 100 时,按 100 分计。

2. 4 不足转向度 U, 按前、后桥侧偏角差值与侧向加速度关系曲线上侧向加速度值为 2m / s²处的平均斜率(纵坐标值除以横坐标值)计算。评价计分值按式(2)计算。

$$N_{U} = 60 + \frac{U(U_{60} - U)(\lambda - U)}{U_{100}(U_{60} - U_{100})(\lambda - U_{100})} \cdot 40 \cdots (2)$$

式中: $N_{ij}$  —— 不足转向度的评价计分值;

U——不足转向度的试验值、 $(*)/(m/s^2)$ 。

$$\lambda$$
------根据  $U_{00}$ 与  $U_{100}$ 的比值计算的系数, $\lambda = \frac{2 \cdot U_{00}/U_{100}}{U_{00}/U_{100}-2} \cdot U_{100}$ ;

 $U_{so}$  — 不足转向度的下粮值,(°)/(m/s²);

 $U_{\text{inn}}$  — 不足转向度的上限值,(°)/( $\text{tn/s}^{\text{t}}$ )。

2.5 车箱侧倾度 K,,按车箱侧倾角与侧向加速度关系曲线上侧向加速度值为 2 m/s² 处的平均斜率(纵坐标值除以横坐标值)计算。评价计分值按式(3)计算:

$$N_{i} = 60 + \frac{40}{K_{60} - K_{4000}} \cdot (K_{440} - K_{4}) \cdots (3)$$

式中: $N_{\bullet}$ ——车箱侧倾度的评价计分值;

Ken — 车箱侧倾度的下限值,(°)/(m/s²),

Knoo --- 车箱侧倾度的上限值,(°)/(m/s²),

 $K_{\bullet}$  — 车箱侧倾度的试验值、 $(\circ)/(m/s^{\circ})$ 。

- 2.5.1 当 N,大于 100 时,按 100 分计。
- 2. 6 稳态回转试验的综合评价计分值,按式(4)计算:

$$N_{\mathbf{W}} = \frac{N_{\bullet_a} + N_o + N_{\bullet}}{3} \dots (4$$

式中: $N_w$  —— 稳态回转试验的综合评价计分值。

- 3 转向回正性能试验
- 3. 1 本项试验,按松开转向盘(方向盘)3s 时的残留横摆角速度绝对值 $\triangle r$  及横

摆角速度总方差 Er 两项指标进行评价计分。

3.2  $\Delta r$  及  $E_r$  的下限值  $\Delta r_{50}$ ,  $E_{r50}$ 与上限值  $\Delta r_{100}$ ,  $E_{r100}$ , 见表 2。

表 2

|                  |   |                           |                            |                  | •                 |                           |                            |                  |                   |  |
|------------------|---|---------------------------|----------------------------|------------------|-------------------|---------------------------|----------------------------|------------------|-------------------|--|
|                  |   |                           |                            |                  | 指                 | 标                         |                            |                  |                   |  |
|                  | [ |                           | 低速                         | 回正性              |                   | 高速回正性"                    |                            |                  |                   |  |
| 车 型              | 型 | Δr <sub>40</sub><br>(*)/s | Δr <sub>100</sub><br>(*)/8 | E <sub>110</sub> | E <sub>r100</sub> | Δr <sub>40</sub><br>(*)/s | Δr <sub>100</sub><br>(°)/s | E <sub>140</sub> | E <sub>r100</sub> |  |
| 新车、客车4<br>最大总质量  |   | 2. 0                      |                            | 0.600            | 0.30              | 0.5                       |                            | 0.600            | 0. 300            |  |
| 客车和货<br>2.5t<最大总 | 1 | 3. 0                      |                            | 0. 700           | 0. 350            | 1.5                       | 0                          | 0. 700           | 0. 350            |  |
| 客车和货<br>6c<最大总员  |   | 4. 5                      | 0                          | 0. 800           | 0.400             |                           |                            |                  |                   |  |
| 客车和货<br>最大总质量    |   | 6.0                       |                            | 0. 900           | 0. 450            |                           |                            |                  |                   |  |

注:1)最大总质量大于 6 t 的客车与货车,高速回正性下进行评价计分值计算。

3.3 低速回正性试验与高速回正性试验的残留横摆角速度绝对值  $\Delta r$  的评价计分值,均按式 (5) 计算:

$$N_{\Delta r} = 60 + \frac{40}{\Delta r_{60} - \Delta r_{100}} \cdot (\Delta r_{60} - \Delta r) \cdots (5)$$

式中: $N_{\triangle}$  一一转向回正性能试验残留横摆角速度绝对值的评价计分值;

 $\Delta r_{so}$  转向回正性能试验残留横摆角速度绝对值的下限值,(°)/s;

Δr<sub>100</sub>----转向回正性能试验残留横摆角速度绝对值的上限值,(°)/s;

Δr---转向回正性能试验残留横摆角速度绝对值的试验值,(°)/s。

3.4 低速回正性试验与高速回正性试验的横摆角速度总方差 Er 的评价计分值,均按式(6)计算:

$$N_{E} = 60 + \frac{40}{\Delta r_{60} - \Delta r_{100}} \cdot (E_{r60} - E_{r}) \cdot (6)$$

式中:Nz — 转向回正性能试验横摆角速度总方差的评价计分值;

E, e0 — 转向回正性能试验横摆角速度总方差的下限值, 8;

E-100 ---- 转向回正性能试验横摆角速度总方差的上限值,s;

 $E_r$ ——转向回正性能试验横摆角速度总方差的试验值,s。

- 3. 4. 1 当 NE 大于 100 时, 按 100 分计。
- 3.5 转向回正性能试验的综合评价计分值
- 3.5.1 对于只进行低速回正性能试验的汽车,根据低速回正性的  $N_a$ 与  $N_a$ 两项评价计分值 按式(7)计算。

$$N_{\rm H} = \frac{N_{\Delta r} + N_{\rm E}}{2} \dots (7$$

式中:Nn---转向回正性能试验综合评价计分值。

3. 5. 2 对于进行低速与高速回正性能试验的汽车,根据低速回正性的  $N_{a}$ 与  $N_{b}$  及高速回正性的  $N'_{a}$ 与  $N'_{b}$  四项评价计分值,按式(8)计算。

$$N_{\rm R} = \frac{N_{\Delta r} + N_{\bar{z}} + N'_{\Delta r} + N'_{\bar{z}}}{4} \dots (8)$$

式中:N'。——高速回正性能试验残留横摆角速度绝对值的评价计分值;

N'z---高速回正性能试验横摆角速度总方差评价计分值。

4 转向轻便性试验



- 4.1 本项试验按转向盘平均操舵力F。与转向盘最大操舵力F。两项指标进行评价计分。
- 4.2 F. 与 F. 的下限值 F. et 、F. m to 与上限值 F. 100 、F. m 100 , 见表 3。

長 3

Ν

| de Tul                    | 指 标    |               |        |           |  |  |  |  |
|---------------------------|--------|---------------|--------|-----------|--|--|--|--|
| 车型 -                      | F. 440 | F.,00         | F=40   | $F_{alm}$ |  |  |  |  |
| 轿车、客车和货车,最大总质量<br>≪2.5 t  | 50.0   | 15. 0         | 80-0   | 30. 0     |  |  |  |  |
| 客车和货车。<br>2.5 t<最大总质量≤6 t | 90.0   | <b>3</b> 0. 0 | 150. 0 | 60.0      |  |  |  |  |
| 客车和货车。<br>6 t<最大总质量≤15 t  | 110.0  | 50-0          | 180.0  | 90. 0     |  |  |  |  |
| 客车和货车,<br>最大总质量>15 t      | 140. 0 | 60. 0         | 220. 0 | 110.0     |  |  |  |  |

4.3 转向盘平均操舵力 F. 的评价计分值,按式(9)计算:

$$N_{P_s} = 60 + \frac{40}{F_{ssp} - F_{stoo}} \cdot (F_{sso} - F_s) \cdots (9)$$

式中:Ne.----转向盘平均操舵力的评价计分值;

 $F_{10}$ —一转向盘平均操舵力的下限值, $N_1$ 

 $F_{\text{upp}}$  一转向盘平均操舵力的上限值, $N_{\text{i}}$ 

 $F_{\bullet}$  一转向盘平均操舵力的试验值, $N_{\bullet}$ 

- 4.3.1 当 N<sub>5</sub> 大于 100 时,按 100 分计。
- 4.4 转向盘最大操舵力 Fm 的评价计分值,按式(10)计算:

$$N_{F_m} = 60 + \frac{40}{F_{me0} - F_{m100}} \cdot (F_{me0} - F_m) \cdots (10)$$

式中 $:N_{F_{-}}$  ——转向盘最大操舵力的评价计分值;

 $F_{mb0}$ ~····转向盘最大操舵力的下限值,N;

 $F_{m100}$ ---转向盘最大操舵力的上限值·N;

 $F_m$ ——转向盘最大操舵力的试验值,N。

- 4.4.1 当 Nr 大于 100 时,按 100 分计。
- 4.5 转向轻便性试验的综合评价计分值,按式(11)计算:

$$N_{\mathbf{Q}} \simeq \frac{N_{\mathbf{F}_{\mathbf{q}}} + \eta_{\mathbf{F}} \cdot N_{\mathbf{F}_{\mathbf{m}}}}{1 \div \eta_{\mathbf{F}}} \dots (1)$$

式中:  $N_Q$  ---- 转向轻便性的综合评价计分值:  $\eta_s=0.6+0.08C$  --- 与汽车最大总质量  $G_s$  (单位 t)有关的加权系数。

- 5 转向瞬态响应试验(转向盘转角阶跃输入)
- 5. 1 本项试验,按侧向加速度值为  $2m/s^2$ 时的汽车横摆角速度响应时间 T进行

评价计分。

**5. 2** 最大总质量小于或等于 6t 的汽车,汽车横摆角速度响应时间 T的下限值  $T_{60}$ 

与上限值 T100, 见表 4。

|                                       | 表 4   | s s       |
|---------------------------------------|-------|-----------|
|                                       | 指     | <b>标</b>  |
| 车 型 <u>─</u> ─-                       | T 60  | $T_{150}$ |
| 轿车→最高车速>120 km/h                      | 0. 20 | 0.06      |
| 新车,最高车速≤120 km/b<br>客车和货车,最大总质量≤2.5 t | 0.30  | g. 1g     |
| 答在和货车。<br>2-54<最大总质量≤6+               | 0. 40 | 0.15      |

- 5. 3 最大总质量大于6t的汽车,本项试验不进行评价计分。
- 5. 4 最大总质量小于或等于 6t 的汽车,汽车横摆角速度响应时间的评价计分值,

按式(12)计算:

$$N_{\rm J} = 60 + \frac{40}{T_{\rm eq} - T_{\rm 100}} \cdot (T_{\rm eq} - T) \cdots (1)$$

式中:N:---- 汽车横摆角速度响应时间的评价计分值;

 $T_{so}$  汽车横摆角速度响应时间的下限值,s;

 $T_{\text{po}}$ —一汽车横摆角速度响应时间的上限值,s;

T---侧向加速度值为  $2m/s^2$ 时,汽车横摆角速度响应时间的试验值,s。

- **5.4.1** 当 *M* 大于 100 时,按 100 分计。
- 6 转向瞬态响应试验(转向盘转角脉冲输入)
- **6.** 1 本项试验按谐振频率 f、谐振峰水平 D和相位滞后角 a 三项指标,进行评价

计分。

6.2 f、D 及  $\alpha$  的下限值  $f_{60}$ 、 $D_{60}$ 、 $\alpha_{60}$ 与上限值  $f_{100}$ 、 $D_{100}$ 、 $\alpha_{100}$ ,见表 5 。

表 5

|                          |                       |             | 24 0            |                        |             |                   |                       |
|--------------------------|-----------------------|-------------|-----------------|------------------------|-------------|-------------------|-----------------------|
|                          |                       |             | 指               | 标                      |             |                   |                       |
| 华 型                      | ∫ <sub>¢u</sub><br>Hz | f 100<br>Hz | D <sub>€0</sub> | D <sub>iod</sub><br>dB | (°)         | α <sub>1100</sub> | 备注                    |
| 轿车                       | 0.70                  | 1.30        |                 |                        | 60.0        | 20. 0             |                       |
| 客车和货车。<br>最大总质量≤2.5 t    | 0, 60                 | 1-00        | 1               |                        | 80.0        | 40.0              | ──按输入頻率<br>为 1 H2 处的  |
| 客车和货车,<br>2.5 t<最大总质量≤6t | 0.50                  | 0.80        | 5.00            | 2, 00                  | 120. 0      | 60.0              | α值计算                  |
| 客车和货车。<br>6 t<最大总质量≤15 t | 0.40                  | 0.60        |                 | ļ                      | 80.0        | 30.0              | 按輸入頻率                 |
| 客车和货车,<br>最大总质量>15 t     | 0.30                  | 0.50        | 1<br>!          |                        | 100.0       | 60.0              | 为 0.5 Hz 列<br>的 α 值计算 |
|                          |                       |             | <u> </u>        |                        | <del></del> |                   |                       |

6. 3 谐振频率 f的评价计分值,按式(13)计算:

$$N_I = 60 + \frac{40}{f_{100} - f_{60}} \cdot (f_{\rm P} - f_{60}) - \dots$$
 (13)

式中:N: --- 谐振频率的评价计分值;

 $f_{100}$  - 谐振频率的上限值, $Hz_i$ 

 $f_{10}$ ——谐振频率的下限值,Hz;

 $f_P$  一转向盘转角脉冲输入试验中,幅频特性谐振峰所对应的频率, $H_Z$ 。当不存在明显的谐振峰时,按 70%横摆角速度增益的通频带宽除以  $\sqrt{2}$  计算  $f_P$  值。

- **6.3.1** 当 N<sub>c</sub>大于 100 时,按 100 分计。
- 6. 4 谐振峰水平 D的评价计分值
- 6. 4. 1 谐振峰水平 D的定义,如式(14)所示:

式中:D ····谐振峰水平:dB;

 $A_{P} = f = f_{P}$  处的横摆角速度增益, 1/s;

 $A_0 \longrightarrow f = 0$  处的横摆角速度增益,1/s.

**6.4.2** 谐振峰水平 *D*的评价计分值,按式(15)计算:

$$N_D = 60 + \frac{40}{D_{so} - D_{loo}} \cdot (D_{so} - D) \cdots (15)$$

式中 $:N_D$ ——谐振峰水平的评价计分值:

 $D_{\infty}$  "谐振峰水平的下限值,dB;

 $D_{100}$  - "" 谐振峰水平的上限值,dB;

D— 谐振峰水平的试验值,dB。

- 6. 4. 3 当 ND 大于 100 时, 按 100 分计。
- 6. 5 相位滞后角 a 的评价计分值, 按式(16)计算:

$$N_{\bullet} = 60 + \frac{40}{\alpha_{50} - \alpha_{100}} \cdot (\alpha_{50} - \alpha) \cdot \dots \cdot (16)$$

式中:N、——相位滞后角的评价计分值;

α60 — 相位滞后角的下限值、(°);

 $\alpha_{100}$  — 相位滞后角的上限值、(°);

a --在相应频率下(见表 5 中备注)相位滞后角的试验值、(°)。

- 6. 5. 1 当 Na 大于 100 时,按 100 分计。
- 6.6 转向盘转角脉冲输入试验的综合评价计分值,按式(17)计算:

式中:Na 转向盘转角脉冲输入试验的综合评价计分值。

#### 7 蛇行试验

- 7.1 本项试验,按基准车速下的平均横摆角速度峰值 r 与平均转向盘转角峰值  $\theta$  进行评价计分。
  - 7.2  $r, \theta$  的下限值  $r_{so}, \theta_{to}$ 与上限值  $r_{too}, \theta_{too}$ , 见表 6。

表 6

|                           |      |              | 指                        | 标                |                 |                         |
|---------------------------|------|--------------|--------------------------|------------------|-----------------|-------------------------|
| 车 型                       | 标桩间距 | 基准车速<br>km/h | r <sub>ee</sub><br>(*)/s | r <sub>100</sub> | Ø <sub>60</sub> | θ <sub>100</sub><br>(*) |
| 轿东、客车和货车。<br>最大总质量≤2.5 t  | 7.0  | 65<br>60"    | 25. 0                    | 10. 0            | 180. 0          | 60.0                    |
| 客车和货车。<br>2.5 t<最大总质量≤6 t | 30   | 50           | 20. 0                    | 8.0              |                 |                         |
| 客车和货车。<br>6 (<最大总质量≤15 t  |      | 60           | 10. 0                    | 4. 0             |                 |                         |
| 客车和货车。<br>最大总质量>15:       | \$0  | 50           | 10.0                     | 4.0              |                 |                         |

注:t)用于最高车速小于 100 km/h 的汽车,

7. 3 平均横摆角速度峰值 r 的评价计分值,按式 (18) 计算:

$$N_r = 60 + \frac{40}{r_{50} - r_{100}} \cdot (r_{50} - r) \cdots (18)$$

式中 $_{1}N_{1}$  平均橫摆角速度峰值的评价计分值;

reo — 平均横摆角速度峰值的下限值,(°)/s;

riou-----平均横摆角速度峰值的上限值,(°)/s;

r----基准车速下,平均横摆角速度峰值的试验值,(°)/s。

- 7. 3. 1 当 N 大于 100 时, 按 100 分计。
- 7. 4 平均转向盘转角峰值  $\theta$  的评价计分值, 按式 (19) 计算:

$$N_{\theta} = 60 + \frac{40}{\theta_{60} - \theta_{100}} \cdot (\theta_{60} - \theta) \dots (19)$$

式中 $:N_0$ —平均转向盘转角峰值的评价计分值;

 $\theta_{so}$ ——平均转向盘转角峰值的下限值、(°);

 $\theta_{100}$  平均转向盘转角峰值的上限值,(°);

 $\theta$ ——基准车速下平均转向盘转角峰值的试验值、 $(\circ)$ 。

- 7. 4. 1 当 N<sub>θ</sub> 大于 100 时, 按 100 分计。
- 7. 5 不能达到基准车速的汽车,  $N_e$ 与  $N_e$ 的评价计分值, 均按式 (20) 计算:

$$N_{r} = N_{d} = 60 \cdot \frac{V_{\bullet}}{V_{\bullet}} \cdots (20)$$

式中: $V_*$  实际达到的蛇行车速,km/h;

 $V_{\rm e}$  一 表 6 中规定的基准车速, $k_{\rm m}/h_{\rm e}$ 

7. 6 蛇行试验的综合评价计分值,按式(21)计算:

$$N_{\bullet} = \frac{2N_{c} + N_{d}}{3}$$
 (21)

式中 $:N_{+}=-$ 蛇行试验的综合评价计分值。

#### 8 汽车操纵稳定性的总评价计分值

- 8.1 稳态转向特性的"否决权"。规定稳态回转试验的中性转向点侧向加速度值  $N_*$ 为具有"否决权"的指标。当  $N_*$ 小于 60 分或试验的最大侧向加速度值小于  $a_*$  的下限值时,汽车操纵稳定性的总评价计分值定为不合格。
- 8.2 最大总质量小于或等于 61的汽车,操纵稳定性的总评价计分值,按式(22)计算。

$$N_z = \frac{N_s + N_j + N_M + N_H + N_Q + N_W}{6}$$
 (22)

式中:Nz---操纵稳定性总评价计分值。

8.3 最大总质量大于 6t 的汽车,操纵稳定性的总评价计分值,按式(23)计算:

$$N_z = \frac{N_5 + N_M + N_H + N_Q + N_W}{5}$$
 (23)

- 8. 4 汽车操纵稳定性评价计分结果按表7或表8进行汇总。
- 8.5 对于需做左转、右转、轻载质量状态及最大总质量状态的试验项目,计算 该项评价计分时,取试验结果中分值最低者。

#### 9 汽车操纵稳定性评价

汽车操纵稳定性的优劣,按总评价计分值大小衡量,总评价计分值小于 60 分

者为不合格。

#### 表 7 汽车操纵稳定性评价计分结果总表(用于产品设计定型)

| 试 验 项 目             | i     | 评 价            | 拵 标        | 13.45 | <br>  项目计分 | <br>  备注 |  |
|---------------------|-------|----------------|------------|-------|------------|----------|--|
| 以 種 火 日             | !     | 指 标            | <b>灣定值</b> | → 计分  | 拠日月2万      | . #E 177 |  |
|                     |       | a <sub>u</sub> | nı/s²      |       |            |          |  |
| <b>豫态回转试验</b>       |       | U              | (*)/(m/s*) |       |            |          |  |
|                     | :     | K,             | (°)/(m/s²) |       |            |          |  |
|                     | A£ 2# | Δr             | (*)/s      |       |            |          |  |
| 体布面无料处验             | 低速    | $E_{r}$        | s          |       |            | ·        |  |
| 转向回正性试验             | 高速    | $\Delta r$     | (°)/s      |       | j ,        |          |  |
|                     |       | $E_r$          | s          | 1     | :          |          |  |
| ナンシッカン 信表 はしきそまん    |       | F.             | . N        |       | :          |          |  |
| 转向轻便性试验             |       | Fna            | N          |       | ]          |          |  |
| 转向盘角阶 <b>跃输</b> 人试验 |       | T              | 8          |       |            |          |  |
|                     |       | f              | Hz         |       |            |          |  |
| 转向盘角脉冲输入试验          | i     | D              | dB         |       |            |          |  |
|                     |       | a              | , (*)      |       | 1          |          |  |
| 蛇行试验                |       | r              | (*)/s      |       | 1          |          |  |
|                     |       | 0              | (*)        | +     | 1          |          |  |

汽车操纵稳定性总评价计分。

表 8 汽车操纵稳定性评价计分结果总表(用于产品质量检查)

| 试 驗 项 目    | 评 价 指 标          |         |     |               | 标                | 计分           | 项目计分  | 备往 |  |   |
|------------|------------------|---------|-----|---------------|------------------|--------------|-------|----|--|---|
|            | 指标               |         | 测定值 |               | 1 1/2            | 59( ## FT 24 | M tr. |    |  |   |
| · 稳态回转试验   | α <sub>ε</sub> . |         |     |               | m/s <sup>2</sup> |              |       | •  |  |   |
|            |                  |         |     | (,            | )/(m/s²)         |              |       |    |  |   |
|            | κ,               |         |     | (°            | )/(m/s²)         | !            |       |    |  |   |
| <u>-</u> - |                  |         |     |               | (")/8            |              |       |    |  |   |
| 转向回正性试验    | 低速               | $E_{i}$ |     | $E_{\bullet}$ |                  |              | s     | İ  |  | • |
| 我问但正任以领    | ** \#!           | ۵r      |     |               | (")/s            |              |       |    |  |   |
|            | 高速               | Ε,      |     |               | 5                |              |       |    |  |   |
| 转向轻便性试验    | F. F.            |         |     | И             |                  | , ,          |       |    |  |   |
|            |                  |         |     | N             |                  |              |       |    |  |   |



## 附加说明:

本标准由中国汽车工业总公司提出。

本标准由全国汽车标准化技术委员会归口。

本标准由长春汽车研究所、清华大学、上海汽车拖拉机研究所负责起草。

本标准主要起草人: 郭孔辉、王德宝、伦景光、何炳炎。